Posts

Showing posts from November, 2025

Khovanov to Heegaard Floer collapse

Question:  Does $\textrm{dim}_\mathbb{F}\widetilde{\mathit{Kh}}(L) =\textrm{dim}_\mathbb{F} \widehat{\mathit{HF}}(\Sigma(L))$ imply that $\textrm{dim}_\mathbb{F}\widetilde{\mathit{Kh}}(L)=\textrm{det}(L)$? Ozsvath--Szabo prove for any link $L\subset S^3$ that there exists a spectral sequence from the reduced Khovanov homology $\widetilde{\mathit{Kh}}(L)$ to the Heegaard Floer homology $\widehat{\mathit{HF}}(\Sigma(L))$ of the branched double cover of $S^3$ branched along $L$, with coefficients in $\mathbb{F}=\mathbb{Z}/2\mathbb{Z}$. This implies an inequality of dimensions \[\textrm{dim}_\mathbb{F}\widetilde{\mathit{Kh}}(L) \geq \textrm{dim}_\mathbb{F} \widehat{\mathit{HF}}(\Sigma(L)).\] This is an equality ---equivalently, the spectral sequence collapses---whenever \[\textrm{dim}_\mathbb{F}\widetilde{\mathit{Kh}}(L)=\textrm{det}(L)\] (which happens for instance whenever $L$ is quasi-alternating or more generally Khovanov-thin ) ,  in which case $\Sigma(L)$ is an L-...