Annular Khovanov homology assigns to a link $L$ in a solid torus (aka a thickened annulus) a tri-graded abelian group $$\mathit{AKh}(L) = \bigoplus_{i,j,k} \mathit{AKh}^{i,j}(L,k).$$ Grigsby-Licata-Wehrli proved that there's an $\mathfrak{sl}_2(\mathbb{C})$ action on annular Khovanov homology with complex coefficients in which the weight space grading corresponds to the $k$-grading on $\mathit{AKh}.$ It follows that annular Khovanov homology is trapezoidal with respect to the $k$-grading. More precisely, if we let $a_k = \dim\mathit{AKh}(L,k)$, then $$a_k \geq a_{k'}$$ when $k\equiv k'\,\mathrm{mod}\, 2$ and $|k|<|k'|$. In particular, the sequence $$\{a_k\}_{k\equiv i\, \mathrm{mod}\, 2}$$ is unimodal for any fixed $i$. The question below asks whether something stronger is true: Question: For a fixed $i$, is the sequence $\{a_k\}_{k\equiv i\, \mathrm{mod}\, 2}$ in fact log-concave ? This is asking whether $$a_{k}^2 \geq a_{k-2}a_{k+2}$$ for all $k$. If so, then th